speech2linear
Author: Heli Qi Affiliation: NAIST Date: 2022.07
Speech2LinearSpec
Bases: Module
The acoustic frontend where the input is raw speech waveforms and the output is linear spectrogram.
Source code in speechain/module/frontend/speech2linear.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
|
forward(speech, speech_len)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
speech
|
Tensor
|
(batch, speech_maxlen, 1) or (batch, speech_maxlen) The input speech data. |
required |
speech_len
|
Tensor
|
(batch,) The lengths of input speech data |
required |
Returns:
Type | Description |
---|---|
The linear spectrograms (energy or magnitude) with their lengths. |
Source code in speechain/module/frontend/speech2linear.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
module_init(hop_length, win_length, sr=16000, n_fft=None, preemphasis=None, pre_stft_norm=None, window='hann', center=True, normalized=False, onesided=True, mag_spec=False, return_energy=False, clamp=1e-10, logging=False, log_base=None)
The transformation from waveform to linear spectrogram has 4 steps
- (optional) waveform pre-emphasis (implemented by Conv1d layer)
- (optional) waveform pre-normalization (not recommended for TTS model)
- STFT processing (implemented by torch.stft())
- STFT postprocessing: zero masking, (optional)sqrt for magnitude, (optional)clamping + logging
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hop_length
|
int or float
|
int or float the distance between neighboring sliding window frames for STFT. int means the absolute number of sampling point, float means the duration of the speech segment (in seconds). |
required |
win_length
|
int or float
|
int or float the size of window frame for STFT. int means the absolute number of sampling point, float means the duration of the speech segment (in seconds). |
required |
sr
|
int
|
int The sampling rate of the input speech waveforms. Only used for window calculation. |
16000
|
n_fft
|
int
|
int The number of Fourier point used for STFT |
None
|
preemphasis
|
float
|
float The preemphasis coefficient before STFT. |
None
|
pre_stft_norm
|
str
|
str The normalization type for the speech waveforms before STFT. |
None
|
window
|
str
|
str The window type for STFT. |
'hann'
|
center
|
bool
|
bool whether to pad input on both sides so that the t-th frame is centered at time t × hop_length. |
True
|
normalized
|
bool
|
bool controls whether to return the normalized STFT results |
False
|
onesided
|
bool
|
bool controls whether to return half of results to avoid redundancy for real inputs. |
True
|
mag_spec
|
bool
|
bool controls whether to calculate the linear magnitude spectrogram during STFT. True feeds the linear magnitude spectrogram into mel-fbank. False feeds the linear energy spectrogram into mel-fbank. |
False
|
return_energy
|
bool
|
bool Whether to calculate the frame-wise energy for the linear magnitude (energy) spectrogram |
False
|
clamp
|
float
|
float The minimal number for the log-linear spectrogram. Used for numerical stability. |
1e-10
|
logging
|
bool
|
bool Controls whether to take log for the mel spectrogram. |
False
|
log_base
|
float
|
float The log base for the log-mel spectrogram. None means the natural log base e. |
None
|
Source code in speechain/module/frontend/speech2linear.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
recover(feat, feat_len, inv_preemph_winlen=100)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
feat
|
Tensor
|
|
required |
feat_len
|
Tensor
|
|
required |
inv_preemph_winlen
|
int
|
|
100
|
Returns:
Source code in speechain/module/frontend/speech2linear.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|